If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p^2+16p-4=0
a = 1; b = 16; c = -4;
Δ = b2-4ac
Δ = 162-4·1·(-4)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{17}}{2*1}=\frac{-16-4\sqrt{17}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{17}}{2*1}=\frac{-16+4\sqrt{17}}{2} $
| 2295=17n | | 5×(n-2)=35 | | 3-2x=2.2 | | -v-8=-4v+19v=-3 | | 3m³+3m²-90m=0 | | 8x+-1x^2=0 | | 5x-13x+2=-70+2x | | 10x+13(x-28.500)=860.000 | | n(n+7()=0 | | 4-x-8=-6 | | 40-7=2-v+3 | | 2p+22=p | | 2(x-290)+6x=10940 | | 3r2-19r=14 | | 5x-12/2+21+x/4=3x+5/16 | | 2*1.71=x | | (12-3i)+(9+2i)=21-i | | 2x=110÷2 | | 9x+19=10x+10 | | (2+x)(4+x)=32 | | 1/2(2x)=18 | | 1/5x+1/2(2x)=18 | | -x/4+8=-54 | | 10x+x13=182 | | 5y+11=102 | | 2x/6=48/12 | | -4y-3y-1=-71 | | 2x2+10=1162 | | 5y+6y-6=93 | | c=13^2+26 | | -6s+5=-37 | | 2x-(21+1)=-31 |